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A scientifically sound integrated assessmentmodeling (IAM) system capable of providing optimized cost-benefit
analysis is essential in effective air quality management and control strategy development. Yet scenario optimi-
zation for large-scale applications is limited by the computational expense of optimization overmany control fac-
tors. In this study, a multi-pollutant cost-benefit optimization system based on a genetic algorithm (GA) in
machine learning has been developed to provide cost-effective air quality control strategies for large-scale appli-
cations (e.g., solution spaces of ~1035). The method was demonstrated by providing optimal cost-benefit control
pathways to attain air quality goals for fine particulate matter (PM2.5) and ozone (O3) over the Pearl River Delta
(PRD) region of China. The GA was found to be N99% more efficient than the commonly used grid searching
method while providing the same combination of optimized multi-pollutant control strategies. The GA method
can therefore address air qualitymanagement problems that are intractable using the grid searchingmethod. The
annual attainment goals for PM2.5 (b 35 μgm−3) and O3 (b 80 ppb) can be achieved simultaneously over the PRD
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Ozone
PM2.5
region and surrounding areas by reducing NOx (22%), volatile organic compounds (VOCs, 12%), and primary PM
(30%) emissions. However, to attain stricter PM2.5 goals, SO2 reductions (N 9%) are needed aswell. The estimated
benefit-to-cost ratio of the optimal control strategy reached 17.7 in our application, demonstrating the value of
multi-pollutant control for cost-effective air quality management in the PRD region.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Tropospheric ozone (O3) and fine particulate matter (PM2.5) impose
adverse effects upon human health and ecosystems. To alleviate these
impacts, the China State Council has implemented substantial air quality
control policies to reduce their precursor emissions. Since the Air Pollu-
tion Prevention and Control Action Plan was promulgated in 2013, the
Pearl River Delta (PRD) region has taken the lead in effectively attaining
the national annual averaged PM2.5 standard of 35 μg m−3 in 2015 (Li
et al., 2019a). However, O3 concentrations in the PRD region have exhib-
ited an increasing trend since 2015, and the number of days with ele-
vated O3 pollution in PRD greatly exceeds the number of days with
elevated levels of other pollutants combined. Therefore, the current air
quality control strategy for PRD emphasizes the need for coordinated
control of both PM2.5 and O3 pollution.

Integrated assessment modeling (IAM) for cost-benefit analysis
(CBA) is considered an effective tool to guide the design of control strat-
egies (Amann et al., 2011; Daily et al., 2009; Harmsen et al., 2015;
Wegner and Pascual, 2011; Xing et al., 2017a). For instance, the Green-
house Gas-Air Pollution Interactions and Synergies (GAINS) model,
whichwas developed by the International Institute for Applied Systems
Analysis (IIASA) (Amann et al., 2011), has been widely used to assess
the benefits and costs of air quality improvement (Amann et al.,
2011b; Amann et al., 2008; Cheewaphongphan et al., 2017; Li et al.,
2019b). GAINS uses reduced-form source-receptor relationships de-
rived from a sample of sensitivity simulations using the EuropeanMon-
itoring and Evaluation Programme (EMEP) (Simpson et al., 2012).
Nevertheless, secondary organic aerosols and nonlinear atmospheric
chemistry associated with the joint control of pollutant precursors are
not addressed well by the GAINS model (Amann et al., 2011). As a
new policy-oriented IAM, the Air Benefit and Cost and Attainment As-
sessment System (ABaCAS) can provide a streamlined cost-benefit anal-
ysis for the development of effective multi-pollutant control strategies
(Xing et al., 2017a). ABaCAS incorporates an advanced response surface
model (RSM) that can quantify the nonlinear interactions of O3 and
PM2.5 to their precursor emission reductions quicklywithminimal com-
putation. The RSM used in ABaCAS was developed by applying ad-
vanced statistical interpolation techniques to meta-simulation
scenarios performed with a comprehensive photochemical air quality
model (Wang et al., 2011; Xing et al., 2011; Zhao et al., 2015a; Zhao
et al., 2015b). An advantage of ABaCAS is that the nonlinear interactions
among different precursor emissions can be simulated relatively well.
However, the previous ABaCAS system did not contain a cost-benefit
optimization module, and thus did not facilitate assessments of cost-
effective pollution control strategies.

A series of research efforts have been undertaken to improve the de-
velopment of cost-effective control strategies for PM2.5 (Amann et al.,
2001; Carnevale et al., 2012; Harley et al., 1989) and O3 (Carnevale
et al., 2012; Carnevale et al., 2007; Cohan et al., 2006; Fu et al., 2006;
Guariso et al., 2004). In particular, the LEast-COst control strategy opti-
mizer (LE-CO) module was recently developed and applied in ABaCAS
to identify optimized cost-benefit control strategies for air quality in
the Beijing-Tianjin-Hebei (BTH) region of China (Xing et al., 2019). In
LE-CO, the polynomial function RSM (pf-RSM) significantly improves
the computational efficiency of estimating the air quality response to
emission changes compared to the previous RSM (Xing et al., 2018).
However, the high computational expense of the grid searching (GS)
optimization method limits the applicability of LE-CO to cases with ≤5
precursors and ≤5 regions.

Machine learning (ML)methods are suitable for addressing complex
problems that involve massive combinatorial spaces or nonlinear pro-
cesses, which conventional procedures either cannot solve or can tackle
only at great computational cost (Butler et al., 2018). The genetic algo-
rithm (GA), a well-known ML algorithm inspired by natural selection
processes in biology (Goldber and Holland, 1988), is a robust and effec-
tive technology for solving multi-objective optimization problems
(Filipic et al., 1999; Sirikum and Techanitisawad, 2006; Song et al.,
2019). The GA has been widely used in environmental management
and engineering (Collins et al., 2010; Hong et al., 2018; Rogers et al.,
1995; Seyedpour et al., 2019; VonArx et al., 1998) andhas been success-
fully applied in designing ozone control strategies (Loughlin et al., 2000;
Reis et al., 2005). In this study, the GA was implemented into LE-CO to
address multi-pollutant optimization problems with large solution
spaces (~1035). The Environmental Benefits Mapping and Analysis
Program-Community Edition (BenMAP-CE, version 1.4) (Fann et al.,
2018; Sacks et al., 2018) was then used within ABaCAS to estimate the
health benefits of the optimized control strategies. This innovative sys-
tem, named ABaCAS-Optimized Edition, or ABaCAS-OE, was applied to
generate the optimized control strategies to meet specific air quality
goals for PM2.5 and O3 in PRD, and the performance of ABaCAS-OE was
evaluated for the PRD case study. The ABaCAS-OE is available for down-
load upon request (http://www.abacas-dss.com/abacas/Default.aspx).

2. Materials and methods

2.1. Overview of the ABaCAS-OE system

The ABaCAS-OE system was designed to generate the cost-benefit
optimal control strategies for PM2.5 and O3 air quality attainment. An
overview of ABaCAS-OE is displayed in Fig. 1. First, annual PM2.5 and
O3 goals were set to 35 μg m−3 and 80 ppb, respectively, for cities in
the PRD region in 2020, the target year of the 13th Five-Year Plan in
China. Air quality is required to meet these Class II National Ambient
Air Quality Standard levels according to the 13th Five-Year Plan of Envi-
ronmental Protection in PRD. For cases where the goals cannot be
achieved through full control of all anthropogenic emissions in Domain
3, the goals are relaxed in the ABaCAS-OE system (Fig. 2). Second, the
LE-CO module including the GA (hereafter GA-LECO) is used to select
the optimal combination of emission controls to meet the air quality
goals with the least cost based on the International Control Cost Esti-
mate Tool (ICET). Third, the optimized control strategies are input into
BenMAP-CE to estimate the monetized health benefits resulting from
the PM2.5 and O3 reductions based on concentration-response (C-R)
functions from epidemiology studies. Finally, a sorted list of control
strategies that meet the air quality goals at relatively low cost is
reported.

In the functional module of GA-LECO, the GA parameters, including
population size and the number of generations, are set first. The “popu-
lation size” refers to thenumber of control strategies that are considered
in a given generation, and the “number of generations” refers to the
number of cycles applied in the GA to generate a set of optimized con-
trol strategies. As discussed in detail in Section 3.2, the population size

http://www.abacas-dss.com/abacas/Default.aspx


Fig. 1. Overview of the Air Benefit and Control and Attainment Assessment System-Optimized Edition (ABaCAS-OE). AQ, air quality; SMAT-CE, Software for Model Attainment Test-
Community Edition; GA-LECO, LEast-COst control strategy optimization based on the genetic algorithm (GA); pf-RSM, Response Surface Model with polynomial functions; ICET,
International Control Cost Estimate Tool; BenMAP-CE, Environmental Benefits Mapping and Analysis Program-Community Edition.
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and the number of generationswere set to 400 and 180, respectively, in
this study. After setting these parameters, the initial population of con-
trol strategies was randomly generated to begin the operation process
of GA-LECO. Third, the performance of each strategy was evaluated by
a multi-objective function accounting for total control costs and air
quality concentrations associated with the strategies. The ICET cost
module was applied to estimate the control cost associated with each
control scenario based on themarginal cost curves of pollutant controls
(Sun et al., 2014). The pf-RSM air qualitymodule was run to provide the
estimated response of PM2.5 and O3 concentrations to emission changes
(Wang et al., 2011; Xing et al., 2011; Xing et al., 2017b; Zhao et al.,
2017). The Software for Model Attainment Test-Community Edition
(SMAT-CE), an air quality attainment assessmentmodule that combines
the simulated results from the pf-RSM and monitor data using an im-
proved Voronoi Neighbor Averaging (eVNA) algorithm, was applied to
improve the accuracy of predicted pollutant concentrations (Ding
et al., 2016; Wang et al., 2015; Xing et al., 2017a). During the GA search
process, steps of evaluating control strategies, selection, crossover, and
mutation generated a new generation of control strategies such that
the cost of the strategies generally decreased by generation. Finally,
the algorithm terminated when the maximum number of generations
was reached, and a cost-sorted list of optimized control strategies was
output. Further description of the GA is provided in Section 2.2.

2.2. Optimization method

As one of themost popular ML algorithms, the GA was developed in
the 1970s by Holland (1975). It is a random search optimization algo-
rithm that simulates biological evolution theory and searches for the op-
timum of an objective function (Song et al., 2019). Unlike other search



Fig. 2. (a) WRF-CMAQ simulation domains: 27 km (d01), 9 km (d02), and 3 km (d03); (b) regions defined in the pf-RSM with air quality monitor site locations. The triangular points
represent the monitors in the PRD, the pentacle points represent the selected monitors for evaluation of the model performance.
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techniques, the GA simultaneously processes a population of solutions
and requires no specific knowledge about the problem space to success-
fully search for good solutions. Also, the GA exhibits a high degree of ro-
bustness in finding ideal solutions to difficult optimization problems
(Goldberg, 1989; Holland, 1975). These characteristics have led to the
increasing use of the GA in ML (Filipic et al., 1999; Giordana and Neri,
1996; Massoudieh et al., 2008; Mousavi et al., 2014; Seyedpour et al.,
2019). The evolutionary strategy of GA in this study is shown in the dot-
ted rectangle in Fig. 1. Here, the GA is initiated through random a gener-
ation of a specified number of control strategies, and then each control
strategy is evaluated by themulti-objective function. Subsequently, op-
timal control strategies are combined to create offspring by the selec-
tion, crossover, and mutation, and the scheme is repeated over many
generations until the maximum number of generations is reached
(Stramer et al., 2010).

The GA evolution cycle is based on three fundamental operators:
(1) Selection: This operator selects effective control strategies with
low fitness values to participate in crossover to transfer the beneficial
control factors to offspring. In this study, the rank selection method is
applied by directly comparing the fitness values without contrasting
looping statements (Song et al., 2019). (2) Crossover: This operator gen-
erates high-quality “child” control strategies by swapping the control
factor values of the two-parent control strategies identified by the selec-
tion operator. The crossover probability is usually very high, in the range
of [0.7, 1], because crossover occurs sparsely if the probability is too
small and is inefficient for evolution (Elhoseny et al., 2018; Yang,
2014). (3) Mutation: This operator introduces random variation in the
reduction rate of control factors after crossover. The mutation operator
maintains the diversity of the population and avoids entrapment of the
GA in local optima. Mutation rates of b5% are typically applied in the
current literature, but exceptional cases have considered much higher
rates. In this system, the crossover probability and mutation rate were
set to 1 and 0.05, respectively, tomaximize the retention of elite individ-
uals to enhance the population characteristics.

In our work, the objective function was optimized for air quality
goals of PM2.5 and O3 and control costs, all of which depended on the
emission reduction levels of control factors. The search sample space
was defined as emission reduction levels from 0 to 90%, with reduction
levels stepped by 10%, resulting in 1035 possible control strategies based
on the combination of different reduction rates for the control factors.
The control factors consisted of five pollutants in seven regions over
PRD. The pollutants were NOx, SO2, NH3, volatile organic compounds
(VOCs; i.e., VOC and intermediate VOC), and primary PM (including pri-
mary organic aerosol (POA) and other primary PM), and the regions
were Shunde (SD), Foshan (FS), Guangzhou (GZ), Jiangmen (JM),
Zhongshan (ZS), Dongguan and Shenzhen (DG&SZ), and other regions
(OTH). NH3 emission control can be an efficient strategy to reduce
PM2.5, but the costs of controlling NH3 in PRD are much higher than
those of primary PM and SO2. Moreover, the air quality standard of
PM2.5 in PRD can be achieved by controlling primary PM and SO2 emis-
sions alone, and so the emission reduction ratio for NH3 was set to 0 for
all control strategies designed in this study. The objective function is de-
fined as follows:

Minimize

F ¼ Cost
Costmax

� �
cost term

þ ∑sp
ΔConcsp

ΔConcsp; max

� �
air quality term

ð1Þ

Subject to

Cost ¼
X
r

X
p

Costrp ð2Þ

ΔConcsp ¼
X
r

X
sp

Concrsp;control−Concsp;goal
� �

ð3Þ

Concrsp;control−Concsp;goal ¼ 0; if Concrsp;control≤Concsp;goal ð4Þ

ΔConcsp; max ¼
X
r

X
sp

Concrsp;baseline−Concsp;goal
� �

ð5Þ

Concrsp;baseline−Concsp;goal ¼ 0; if Concrsp;baseline ≤goal Concsp;goal ð6Þ

ΔConcsp; max≠0 ð7Þ

where F is the fitness of the control scenario (to be minimized); Cost is
the cost of the control scenario; Costmax is the cost of the control scenario
when reduction ratios of all control factors reach maximum; ΔConcsp is
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the concentration delta between the control concentration and goal
concentration for pollutant sp (i.e., PM2.5 and O3); ΔConcsp,
max is the concentration delta between the baseline concentration and goal concentration

for pollutant sp; Costp
r is the cost for pollutant p (i.e., NOx, SO2, NH3, VOCs,

and primary PM) at region r (i.e., SD, FS, GZ, JM, ZS, DG&SZ, and OTH);
Concsp, control

r is the control concentration for pollutant sp at region r;
Concsp, goal is the air quality goal of pollutant sp; and Concsp, baseline

r is
the baseline concentration for pollutant sp at region r. The cost for pol-
lutant p over all control technologies is calculated with (8):

Costrp ¼
X
i

Costrp;i ð8Þ

Costrp;i ¼ UCp;i � ΔEmisrp;i ð9Þ

ΔEmisrp;i ¼ CtrRr
p �

X
s

baseline Emisr;sp ð10Þ

where
Costp, i

r is the cost of technology i for pollutant p at region r; UCp, i is the
unit cost of technology i for pollutant p; ΔEmisp, i

r is the emission reduc-
tion by the technology i for pollutant p at region r; baseline_Emisp

r,

s is the baseline emissions of pollutant p at region r in sector s where control technology i

is applied; and CtrR
p
r is the emission reduction ratio of pollutant p at region

r, which is the optimized variable based on the GA.
In this study, the data of baseline_Emisp

r, s was derived from the col-
laborative research team of Tsinghua University and South China Uni-
versity of Technology. The parameters of UCp, i were based on Zhang
et al. (2020). The cost estimated refers to the cost related to control
technology application, while the social cost (e.g., subsidy to carry out
the control policy) was not considered in ICET (Xing et al., 2019). The
average control concentration of sp over monitors in a region is calcu-
lated with (11):

Concrsp;control ¼
X
j¼1

n
monitorsp; j

r �
rsmsp; j;control

r CtrRr
∑p

� �
rsmsp; j;baseline

r

n
ð11Þ

where
Monitorsp, i

r is the observed concentration for pollutant sp at monitoring
site j of region r; rsmsp, i, control

r is the function ofmodeled control concen-
tration of pollutant sp at monitoring site j to CtrRp

r based on the pf-RSM;
rsmsp, i, baseline

r is the modeled baseline concentration of pollutant sp at
monitoring site j based on the pf-RSM; and n is the number of monitor-
ing sites in region r. In this study, the PM2.5 and O3monitoring data over
PRDwere obtained from theChineseGuangdongEnvironment Informa-
tion Issuing Platform (http://www.gdep.gov.cn/). The response of O3

and PM2.5 concentrations to individual emissions changes (ΔConc) is
calculated with the pf-RSM as follows:

ΔConc ¼
Xa
i¼1

Ai∙ EP1ð Þi þ
Xa0
j¼1

A0
j∙ EP2ð Þ j þ

Xb
i¼1

Bi∙ EP1ð Þai;1 ∙ EP2ð Þai;2

þ C∙EPM ð12Þ

where ΔConc is the response of O3 and PM2.5 concentrations to individ-
ual emissions changes; EP1 and EP2 are the emission change rates of two
precursors ( P1 and P2 can denote any two of NOx, VOCs, NH3, SO2, or
POA) emissions associated with the baseline; a and a′ are the highest
degrees of precursors; Ai, Aj′, Bi, C are the coefficients of terms; the su-
perscript i, j are the degrees of the polynomials for the precursors; ai, 1
and ai, 2 are the polynomial degrees of precursors P1 and P2, respec-
tively; the superscript b is the total number of interaction terms be-
tween P1 and P2 (i.e., ai, 1 multiplied by ai, 2); and EPM is the emission
change ratio of primary PM relative to the baseline.

The selection of terms to represent pollutant response in the pf-RSM
are based onXing et al. (2018), and the coefficients Ai, Aj′, Bi, Cwerefit to
daily concentrations of O3 and PM2.5 as well as the precursor concentra-
tions of NOx, VOCs, NH3, SO2, and POA in seven regions of PRD. The
terms in Eq. (12) for O3 and PM2.5 in single-region RSMs are summa-
rized in Table S1. The single-region RSMs were combined using the pf-
RSM technique accounting for multi-region interactions from three
components: 1) local formation of PM2.5 and O3 related to their precur-
sor emissions changes at receptor regions; 2) regional transport of pol-
lutants from source regions to receptor regions; 3) inter-regional
chemical interactions among multiple regions (Xing et al., 2017b). The
simulation periods were January, April, July, and October, representing
the average concentration in each season in 2015. Annual average
PM2.5 was represented by the average concentration of these four
months (Wang et al., 2018; Yin et al., 2017b). O3 is a seasonal pollutant
with a higher concentration in summer and autumn. Therefore, the an-
nual average O3 was represented by a two-month (July and October)
average of monthly 90th percentile of maximum daily 8-hr averaged
O3 (Monthly 90th per MDA8 O3) concentration (equation provided in
Section S1). The SMAT-CE was used to adjust the simulation results
with the monitor data to reduce the model bias. Four-month average
PM2.5 concentrationswere projected to the annualmean concentrations
of PM2.5 in this study, as follows. First, the ratio of the twelve-month av-
erage to the four-month average ofmonitor data in 2015was calculated.
Next, the resulting ratio was multiplied by the four-month average of
the monitor-adjusted modeling results under different control scenar-
ios to represent the annual mean concentrations (equation provided
in Section S2). Similarly, for O3, the average of the Monthly 90th per
MDA8O3 in July andOctober under different control scenarioswasmul-
tiplied by the ratio of the annual 90th percentile of maximum daily 8-hr
averaged O3 concentration (Annual 90th per MDA8 O3) to the two-
month average of Monthly 90th per MDA8 O3.

2.3. Health benefits evaluation

The health impact function was used to quantify air pollution-
related health impacts in BenMAP-CE.

Δy ¼ y0 � Pop� eβ�Δx−1
� � ð13Þ

where Δy is the change in the health or environmental effect; y0 is the
incidence rate in the base year; Pop is the exposed population; β is the
unitless C-R function coefficient derived from the relative risk (RR) re-
ported in epidemiologic studies; and Δx is the estimated change in pol-
lutant concentration exposure.

The population data for exposure in 2015 were extracted from
Landscan (https://landscan.ornl.gov/), which is a community standard
for global population distribution data. The mortality rates in 2015
were gained from the GBD results tool (http://ghdx.healthdata.org/
gbd-results-tool) (Ding et al., 2019). Health benefits for five leading
causes of PM2.5-related premature mortality (lung cancer, stroke,
chronic obstructive pulmonary disease, lower respiratory infection,
and ischemic heart disease) and four leading causes of O3-related pre-
mature mortality (coronary heart disease, stroke, cardiovascular dis-
ease, and hypertension) were estimated. C-R function coefficients
used to estimate O3-related health impacts were based on Yin et al.
(2017a), and those for estimating PM2.5-related health impacts were
based on Cohen et al. (2017). The economic benefits associated with
the health impact estimates were quantified using the willingness to
pay (WTP) method. The unit value of avoided premature deaths was
1.68 million Chinese Yuan (CNY) based on Xie (2011).

2.4. Case study domain

TheWeather Research and Forecasting (WRF, version 3.9.1) (NCAR,
2017)model was used to simulatemeteorological conditions in 2015 to
drive simulations with the Community Multiscale Air Quality (CMAQ,
version 5.2) (U.S.EPA, 2017) model under various emission control

http://www.gdep.gov.cn/
https://landscan.ornl.gov/
http://ghdx.healthdata.org/gbd-results-tool
http://ghdx.healthdata.org/gbd-results-tool
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strategies. Three nested simulation domains were used as illustrated in
Fig. 2a. The vertical resolution for all domains was based on twenty
layers from the surface to the tropopause. Domain 1 (d01) covers
most of China and some other parts of Asia with 27 km × 27 km hori-
zontal resolution, Domain 2 (d02) covers southeastern China with
9 km × 9 km resolution, and Domain 3 (d03) covers all of PRD with
3 km × 3 km resolution and was the focus of this study. The innermost
domainwas divided into sevenmajor regions: SD, FS, GZ, ZS, JM, DG&SZ,
and OTH. Air quality monitoring data from the national network were
used in representing local air quality in each city (Fig. 2b). The initial
and boundary conditions for Domain 1 were based on the default pro-
file, and those for Domain 2 and Domain 3 were extracted from simula-
tion results on Domain 1 and Domain 2, respectively. The emission
inventories for Domain 1 andDomain 2were provided by TsinghuaUni-
versity (Ma et al., 2017), and the high-resolution emission inventory for
Domain 3wasdeveloped by the collaborative research teamof Tsinghua
University and South China University of Technology. The boundary
conditions used for simulations over Domain 3 were estimated from
simulations over Domain 2 to represent the impacts of inflow from re-
gions outside of PRD. The same boundary conditions were used in mul-
tiple simulation scenarios to build pf-RSM.
3. Results and discussion

3.1. Validation of WRF-CMAQ and pf-RSM performance

The performance of theWRFmodel was evaluated using themeteo-
rological observation data at the Sugang and Ronggui monitoring sites
centrally located in the domain of this study as in our previous paper
(Li et al., 2019a). Table S2 provides model performance statistics for
temperature, wind speed, and relative humidity for January, April,
July, and October in 2015. The Pearson correlation coefficient (R) for
wind speed is about 0.5 or greater at the sites, but the wind speed is bi-
ased high (NormalizedMean Bias, NMB: 101.02%) in January at Sugang.
For temperature and relative humidity, the R is N0.7, and the NMB
ranges from −4.73% to 1.22% and 2.99% to 15.83%, respectively. These
values are within typical performance ranges in meteorological model-
ing studies (Wang et al., 2016). The CMAQ model performance was
evaluated by comparing model predictions with observations from
three representative sites in the PRD air-quality-monitoring network.
The sites are located in GZ, SD, and JM and represent urban (Guangdong
Business College), industrial (Sugang), and rural (Duanfen) locations,
respectively (Table S3). The R is higher for O3 than for PM2.5, which
ranges from 0.71 to 0.79. Generally, the NMBs for PM2.5 and O3 predic-
tions meet the recommended value for acceptable performance (NMB
±30% for PM2.5, ±15% for O3) (Emery et al., 2017), and range from
−29.42% to 28.48% and − 15.85% to 13%, respectively.

The accuracy of the pf-RSM prediction system was tested by out-of-
sample validation, i.e., comparing the PM2.5 and O3 concentrations cal-
culated by the pf-RSM with the corresponding CMAQ simulations for
ten out-of-sample control strategies. The predictive performance of
the pf-RSM was evaluated using five statistical indices; namely, the
mean normalized error (MeanNE), maximal normalized error
(MaxNE), mean fractional error (MeanFE), maximal fractional error
(MaxFE), and R, are defined as follows:

MeanNE ¼ 1
N

X
i¼1

N j Mi−Oi j
Oi

ð14Þ

MaxNE ¼ max
j Mi−Oi j

Oi

� �
ð15Þ

MeanFE ¼ 1
N

X
i¼1

N j Mi−Oi j
Mi

þ Oi � 2 ð16Þ
MaxNE ¼ max
j Mi−Oi j

Mi
þ Oi � 2

� �
ð17Þ

R ¼
∑i¼1

N Mi−M
� �

Oi−O
� �

ffiffiffiffiffiffiffiffiffiffiffiP
i¼1

p N
Mi−M
� �2 P

i¼1

N

Oi−O
� �2

ð18Þ

where Mi and Oi are the pf-RSM-predicted and CMAQ-simulated value
of the i th data in the series of grid cells, and M and O are the average
pf-RSM-predicted and CMAQ-simulated value over the series.

The MeanNEs for PM2.5 and O3 are 0.88% and 1.58%, respectively, as
shown in Table S4. TheMeanFE andMaxFE in PM2.5 are 0.85% and1.59%,
respectively. TheMeanFE andMaxFE in O3 are 1.51% and 3.23%, respec-
tively. The R values are N0.96. The MeanNE and MaxNE are b2% and 4%
for both PM2.5 and O3, whichmeet the criteria of theMeanNEwithin 2%
andMaxNEwithin 10% defined in our previous paper (Xing et al., 2018).
The pf-RSM-predicted PM2.5 and O3 concentrations match with CMAQ
model simulations fairly well, with normalized errors within 1.53%
and 3.48% for PM2.5 and O3, respectively.

3.2. GA parameter setting

Parameter setting is a key step in designing the optimization algo-
rithm. The GA parameters greatly influence the speed of convergence
and the success of the optimization. The influence of the population
size and number of generations was thoroughly investigated in this
study. Other GA parameters were selected based on recent literature.
The rank selection method was used to select parents for the next gen-
eration. The crossover with a probability of 1 was applied to the parents
to produce the offspring. Random mutation with a probability of 0.05
was used to maintain the diversity of individuals. Using this configura-
tion, the effect of the population size was investigated by varying the
population size from 50 to 550 with the number of generations fixed
at a large value (300). Since the GA is a stochastic algorithm, results dif-
fered in each run; hence, each experiment was repeated ten times and
the average value of costs and run time was calculated. The GA-LECO
runs were done on the same workstations with Intel (R) Xeon
(R) CPU, 2.60 GHz, 32-core processor, and 128 GB RAM. The population
size that provided the most cost-effective control was then used in ad-
ditional trials to select the number of generations.

Fig. 3 shows the range of control costs and computational time re-
quired for each of the combinations of the population size (Fig. 3a)
and the number of generations (Fig. 3b). GA performance initially im-
proves with increasing population size and number of generations
until reaching a level where results are insensitive to further increase.
As population size increases, performance improves (i.e., costs and the
mean and standard deviation for repeated tests decrease), but more
computational time is needed. The least control-cost solution using GA
is similar to that for the GS method when the population size is N400,
and so the population size of 400 is considered as the optimal parameter
in this study. As shown in Fig. 3b, the algorithm approximately con-
verges when the number of generations is 180, yielding an extremely
efficient optimization result. Hence, the maximum number of genera-
tions is set to 180. Based on this parameter analysis and the goal of
obtaining high accuracy of the GA in our application, the population
size and number of generations of theGA are set to 400 and 180, respec-
tively, in this study. The performance of the GA generally depends on
the choice of population size and the number of generations, and
these choices require tradeoffs between accuracy and runtime for a
given application.

3.3. Performance comparison for GA and GS

To explore the performance of the GA, a series of computational ex-
periments with different numbers of control factors were conducted to



Fig. 3. Effect of the population size and number of generations on the performance of the proposed model, (a) average cost and computational time of different population size with 300
generations in ten runs and (b) cost of different number of generations with 400 population size in ten runs, respectively, and the pentagrams were chosen to search the result. The
programs were run on the same workstations with Intel (R) Xeon (R) CPU, 2.60 GHz, 32-core processor, and 128 GB RAM.
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search for the least-cost control scenarios that satisfied targets using the
GA and GSmethods (Fig. 4). Not all cities could attain the targets using a
small number of variable control factors (a limitation of theGSmethod),
and so the goals were set for the whole PRD region in these experi-
ments. The annual attainment goals of PM2.5 and O3 were selected to
be 33 μg m−3 and 80 ppb respectively, which correspond to the 13th
Five-Year Plan. Each experiment was conducted using ten runs with a
uniform sample space, and then the average computational time was
calculated for the runs. The number of variable control factors in the
performance comparison experiments for GA and GS ranged from 3 to
28 as summarized in Table 1. Different numbers of emission source
types were considered for NOx, VOCs, primary PM, SO2 and NH3. For in-
stance, in the case three control factors, one type of NOx emission
source, one type of VOCs emission source, and one type of primary PM
emission source were considered, and the reduction ratios of other
Fig. 4. The comparison of genetic algorithmand grid searchingmethod in the computational tim
strategies satisfying the targets.
control factors were set to zero. Since simulations with the GS method
were limited by computational resources, the number of control factors
stopped at 12 in runs with the GS method.

As shown in Fig. 4, as the number of control factors increases, the
more computational time is needed due to the increased search space.
The same objective function was used to evaluate the control strategies
by GA and GS. According to the values of the objective function, the pro-
posed GA method yields the same optimal control strategies as the GS
method with a much shorter runtime. The runtime of the proposed
GA increases linearly with the numbers of the variables, whereas the
runtime of the GS method increases exponentially. The computational
time of the GA is 99.99% less than that of the GSmethodwhen the num-
ber of control factors reaches 9. Therefore the computational efficiency
of the GA method facilitates large-scale optimization of multi-
pollutant control strategies.
ewith the different number of variable control factors to search the same least-cost control



Table 1
The number of variable control factors in the performance comparison for GA and GS.

Number of variable control factors ENOx EVOCs Eprimary PM ESO2 ENH3

3
1 1 1 0 0

6
2 2 2 0 0

9
3 3 3 0 0

12
4 4 4 0 0

16
4 4 4 4 0

20
5 5 5 5 0

24
6 6 6 6 0

28
7 7 7 7 0

*ENOx, EVOCs, Eprimary PM, ESO2 and ENH3 is the number of the emission source of NOx, VOCs, primary PM, SO2, and NH3, respectively.
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3.4. Case study

3.4.1. Optimized control strategies to attain air quality goals
The formation of O3 and PM2.5 is strongly coupled because of the in-

teractions of their common precursors (Liao et al., 2008). To explore the
effectiveness of coordinated emission controls for O3 and PM2.5 pollu-
tion over the PRD region, two types of control combinations were de-
signed to achieve goals for PRD cities at minimum cost (Fig. 5). The air
quality targets for the two cases are as follows: (1) PM2.5 goal only
(Fig. 5a), and (2) PM2.5 and O3 goals together (Fig. 5b). The PM2.5

goals were ranged from 35 μg m−3 to 25 μg m−3 to examine moderate
to strengthened control, while the O3 goal was 80 ppb in all cases. In
Fig. 5a (PM2.5 goal only), the PM2.5 goal of 35 μgm−3 is achieved by con-
trolling primary PM emissions alone. The control on primary PM emis-
sions is the dominant selection, because primary PM emission
reductions are very efficient in reducing ambient PM2.5 concentrations
and control costs for primary PM emissions are much lower than for
other pollutants (see Fig. S1). For PM2.5 targets b30 μg m−3, SO2 and
NOx emissions are also partially controlled to meet the strengthened
goals. In Fig. 5b (PM2.5 and O3 goals together), the O3 goal is attained
through reducing VOCs by about 12% and NOx by about 22%, which
also helps attain the PM2.5 goal. The control ratios on primary PM are
lower than in Fig. 5a because they are partly substituted with controls
Fig. 5. Selected the least-cost control strategies to achieve certain PM2.5 and O3 goals for ci
on NOx and VOCs. The NOx and VOCs controls also significantly increase
costs, because the control costs of NOx andVOCs are considerably higher
than those of primary PM and SO2.

Multiple pollutant emissions contribute to the ambient concentra-
tions of O3 and PM2.5, and so various combinations of pollutant controls
can achieve air quality targets with the consideration of costs. The top
ten scenarios derived from the optimal parameter are listed in Table 2.
All the scenarios can meet the air quality targets (PM2.5 b 35 μg m−3

and O3 b 80 ppb) for cities in the PRD region. The overall reductions
in NOx (22%) and VOCs (12%) are similar in Scenario 1 and 10, but
the reduction in O3 concentrations is greater in Scenario 10. Scenario
1 applies more aggressive controls on VOCs in JM and NOx in GZ than
Scenario 10, but weaker controls on VOCs in SD and NOx in FS (see
Table S5). Besides, more strengthened controls of SO2 and primary
PM result in higher PM2.5 reductions in Scenario 1. The control costs
of NOx and VOCs are considerably higher than that of the primary PM
and SO2, and higher health benefits obtained from PM2.5 reductions
lead to a higher benefit-to-cost ratio in Scenario 1. The higher
benefit-to-cost ratio in FS for Scenario 2 than Scenario 3 can be attrib-
uted to the larger primary PM control ratio and smaller NOx and VOCs
control ratios; however, more reduction in O3 concentrations is ob-
tained in FS for Scenario 2. This indicates that O3 concentration may
not be monotonically declining along with the increase of the control
ties in the PRD region (a: only PM2.5 target; b: both PM2.5 and O3 (b 80 ppb) targets).



Table 2
Potential candidates to meet the PM2.5 and O3 target achievementa of the cities in PRD.

Scenario NOx SO2 VOCs Primary PM Cost (billion yuan) Economic benefit (billion yuan) Benefit-to-cost ratio

1 22% 0% 12% 30% 1.51 26.70 17.7
2 21% 16% 12% 33% 1.78 28.97 16.0
3 23% 18% 12% 29% 1.66 25.89 15.5
4 20% 19% 12% 29% 1.70 26.17 15.5
5 23% 9% 12% 29% 1.66 25.52 15.5
6 23% 9% 12% 29% 1.66 25.41 15.5
7 23% 0% 12% 29% 1.64 24.89 15.0
8 23% 17% 12% 29% 1.72 25.85 15.0
9 22% 9% 13% 25% 1.92 20.81 11.0
10 22% 0% 12% 25% 1.90 20.28 10.5

a Based on ABaCAS-OE; PM2.5-target: annual averaged concentration b35 μg m−3; O3-target: annual averaged concentration b80 ppb.
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ratios of NOx and VOCs due to the nonlinearities in the air quality re-
sponse. The ten scenarios in Table 1 suggest that there are multiple op-
tions to attain certain air quality goals. Decision-makers can choose
control scenarios by comprehensively considering the control ratio of
each pollutant, control cost, and the benefit-to-cost ratio in each region
to make sound policy.

3.4.2. Attainment assessment and benefit-cost evaluation
Achieving the PM2.5 and O3 targets for all cities requires joint con-

trols in multiple regions across the PRD. The cost-benefit optimal con-
trol scenario 1 (Table 2) that meets the PM2.5 (b 35 μg m−3) and O3 (b
80 ppb) targets in 2020was selected as one example in Fig. 6. The emis-
sion reduction ratios vary distinctly across the PRD for all pollutants in
this case (e.g., NOx reductions ranged from 10% to 50%, VOCs from 10%
to 20%, and primary PM from 20% to 40%). GZ and FS have a lower po-
tential to reduce NOx emissions than the other regions due to the strict
Fig. 6. The optimal cost-benefit control strategies to attain PM2.5 (b 35 μg m−3) and O3 (b 80 p
Foshan, GZ - Guangzhou, HZ - Huizhou, DG - Dongguan, JM - Jiangmen, SZ - Shenzhen, ZQ - Zh
controls applied to NOx emission sources since 2015. Overall, the emis-
sion reduction ratios for VOCs are lower than those of PM2.5 and NOx.

The predicted annual average concentrations of PM2.5 and O3 for cit-
ies over PRD are shown in Fig. 6a. The coordinated control of PM2.5 and
O3 requires a regional joint prevention and control strategy because of
the regional characteristics of PM2.5 and O3 pollution. Compared with
2015, the average annual decrease in PM2.5 and O3 required for cities
in 2020 range from 7% to 18% and from 1% to 8%, respectively, so that
all cities can reach the targets. Under this scenario, NOx, SO2, VOCs,
NH3, and primary PM emissions in the study region are expected to be
reduced by 22%, 0%, 12%, 0%, and 30%, respectively, relative to the year
of 2015.

The cost of the control strategywas estimated based on themarginal
cost curves of the PRD region in the ICET model (Zhang et al., 2020). As
illustrated in Fig. 6b, NOx and VOCs control account for the dominant
share of the total cost. Although the emission reduction ratios for
pb) goals for cities over PRD in the 2020 scenario based on ABaCAS-OE. SD - Shunde, FS -
aoqing, ZS - Zhongshan, ZH - Zhuha.
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primary PM are greater than for VOCs and NOx, the cost of primary PM
controls is lower because of the high cost of VOCs and NOx emission
controls. Control costs are higher in the DG&SZ region, because DG ex-
periences the most serious O3 pollution and requires more NOx emis-
sion reduction. The cost estimated in this study (1.51 billion CNY) is
acceptable based on comparison with estimates from the special fund
for air pollution control (1.27 billion CNY) from 2016 to 2019 reported
by the Department of Ecology and Environment of Guangdong Province
(http://gdee.gd.gov.cn/).

The number of avoided premature deaths attributable to pollution
reductions in each sub-region is expected to range from 140 to 1069,
with a total of over 3700 deaths per year in the PRD region (Fig. 6c).
As a result of the PM2.5 concentration reductions, the avoided prema-
ture deaths and economic benefits are estimated to be about 3734 and
8.76 billion CNY, respectively (Table S6). In response to the O3 concen-
tration reductions, 55 avoided premature deaths and 0.14 billion CNY
economic benefits are estimated. The estimated PM2.5-attributablemor-
tality reductions and economic benefits are higher than for O3, because
of the stronger association of PM2.5 with mortality compared with O3.
PM2.5-attributable premature deaths are predicted to decline by 10%
compared to the base year (2015), and the average PM2.5 concentration
in PRD is estimated to be about 30 μgm−3 under this scenario.Maji et al.
(2018) indicated that reducing the PM2.5 concentrations in the PRD to
25 μg m−3 in 2020 would reduce the number of premature deaths by
17.4% compared with 2015. Hence, the avoided premature deaths esti-
mated in this study are consistent with the literature. Additionally,
using the statistical life value for monetization as our previous study
(Ding et al., 2016; Li et al., 2019a), the reductions in PM2.5 and O3 con-
centrations are estimated to yield economic benefits of over 8.90 billion
CNY which was acceptable.

Fig. 6d shows the benefit-to-cost ratios for the seven sub-regions
and the average benefit-to-cost ratio for the PRD region. Assuming
that the disease burden declines linearly from 2015 to 2020, the eco-
nomic benefits obtained within the five years are calculated to be
26.70 billion CNY. In this scenario, the benefit-to-cost ratio is estimated
as 17.7, which corresponds to a 1770% monetary gain from the invest-
ment in air quality controls. The cost-benefit analysis provides key in-
formation to air quality managers and should be considered to relate
air pollution controls to economic benefits for society.

4. Conclusions

In this study, an innovative integrated assessment system ABaCAS-
OE was developed to provide the optimized cost-benefit control strate-
gies to attain the air quality goals for PM2.5 andO3 in the PRD region. GA-
based optimization is also conducted and compared to the GS method
for estimating the performance of the system. The results demonstrate
that the GA method is N99% more efficient than the GS method while
generating the same optimal multi-pollutant control strategies. In
other words, the system has the ability to design optimal PM2.5 and O3

control strategies for large-scale applications. The annual attainment
goals for PM2.5 (b 35 μg m−3) and O3 (b 80 ppb) can be achieved over
the PRD region and surrounding areas by only controlling NOx, VOCs,
and primary PM emissions; however, to achieve more strengthened
goals, SO2 reductions need be considered as well. The suggested control
strategies can bring considerable health benefits, with the benefit-to-
cost ratio reaching 17.7. The ABaCAS-OE system is expected to greatly
help policymakers to design control strategies that comprehensively
consider air quality targets, costs, and health benefits to fully support ef-
fective decision-making for air pollution prevention and control in
China.

Several uncertainties influenced the results of the optimized control
strategies in this study. (1) For cost estimation, using the provincial
marginal cost curves to conduct the cost assessment causes uncer-
tainties due to the lack of local information about control cost and effi-
ciency. Future investigation into the detailed costs is necessary to
obtain an accurate estimation of urban control costs. (2) For health im-
pact evaluations, uncertainties exist in the epidemiological literature
and the incidence and population data. However, uncertainties in the
incidence and population data were difficult to quantify. For estimation
of economic loss due to prematuremortality, only theWTPmethodwas
used to evaluate economic benefits, and the unit value for monetization
was based on studies in other regions, due to the limited information
available for the PRD region.
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